Space Weather Considerations for Civil Aviation and Suborbital Operations

Terry Onsager, NOAA Space Weather Prediction Center Terry.Onsager@noaa.gov

Main Points

- Space weather overview
- Impacts on aviation and space operations
- International mitigation efforts

Impacts:

- Human radiation exposure
- Communication outages
- Navigation degradation
- Satellite damage

Apollo Moon Landings 1969 - 1972

Apollo 16

Apollo 17

Event would have caused Acute Radiation Sickness, without shielding and medical countermeasures

Proton Exposure versus Geomagnetic Activity

Exposed area during quiet conditions

Exposed area during storm conditions

During quiet conditions the Earth's magnetic field protects the Space Station except in the South Atlantic Anomaly

During storm conditions Space Station is outside this shielding as much as 25 percent of the time

Exposed area during storm conditions

Exposed area during quiet conditions

Alert Issued for Airline Radiation

ALERT: Solar Radiation Alert at Flight Altitudes Conditions Began: 2003 Oct 28 2113 UTC

Comment: Satellite measurements indicate unusually high levels of ionizing radiation, coming from the sun. This may lead to excessive radiation doses to air travelers at Corrected Geomagnetic Latitudes above 35 degrees north, or south.

(Federal Aviation Administration)

RESEARCH ARTICLE

OPEN & ACCESS

Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement

Daniel Matthiä^{1,*}, Martin Schaefer², and Matthias M. Meier¹

2015

- Radiation dose reduced by 42% with 5% fuel increase and 30 min flight delay
- Prompt changes in altitude and velocity not compliant with Air Traffic Mgmt System

Spacecraft Operations and Aviation Impacts January 8, 2014

NBCnews.com

Orbital Sciences cargo delivery to International Space Station

Polar Airline Flights Re-routed

Energetic Proton Flux Geostationary Orbit

Galaxy 15

Customer Growth
NOAA Space Weather Prediction Center – Product Subscription Service

Space Weather Risks are Recognized - National Mitigation Plans are being Developed

South Korea

- Space Weather included in National Risk Profile
- Roles and responsibilities of agencies and ministries defined

Korea Space Weather Center

United Kingdom:

National Register Recognizes Space Weather Risks

National Risk Register of Civil Emergencies

2012 edition

Space Weather Risks are Recognized - Mitigation Plans are being Developed

U.S. National Strategy and Action Plan released October, 2015

- Benchmarks for commercial space and aviation radiation
- Benchmarks for ionosphere (GNSS)
- Observing requirements for aviation services
- Model development for aviation services
- National and international actions

Space Weather is an additional hazard to aircraft operations

Summary

- Space weather is an integral part of our economic and security infrastructures
- Aviation and space operations are impact by space weather in numerous ways: communication, navigation, radiation
- Demand for services is increasing
- National and international actions are helping to establish an integrated, global effort
- ICAO/UNOOSA Symposia are essential for investigating the risks and developing effective mitigation strategies